Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 916: 169896, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38185160

RESUMEN

Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more long-term species- and site- specific studies are needed.


Asunto(s)
Nieve , Suelo , Humanos , Groenlandia , Regiones Árticas , Xilema/fisiología
2.
Sci Total Environ ; 851(Pt 2): 158008, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988628

RESUMEN

Rapid climate change has been driving changes in Arctic vegetation in recent decades, with increased shrub dominance in many tundra ecosystems. Dendroecological observations of tundra shrubs can provide insight into current and past growth and recruitment patterns, both key components for understanding and predicting ongoing and future Arctic shrub dynamics. However, generalizing these dynamics is challenging as they are highly scale-dependent and vary among sites, species, and individuals. Here, we provide a perspective on how some of these challenges can be overcome. Based on a targeted literature search of dendrochronological studies from 2005 to 2022, we highlight five research gaps that currently limit dendro-based studies from revealing cross-scale ecological insight into shrub dynamics across the Arctic biome. We further discuss the related research priorities, suggesting that future studies could consider: 1) increasing focus on intra- and interspecific variation, 2) including demographic responses other than radial growth, 3) incorporating drivers, in addition to warming, at different spatial and temporal scales, 4) implementing systematic and unbiased sampling approaches, and 5) investigating the cellular mechanisms behind the observed responses. Focusing on these aspects in dendroecological studies could improve the value of the field for addressing cross-scale and plant community-framed ecological questions. We outline how this could be facilitated through the integration of community-based dendroecology and dendroanatomy with remote sensing approaches. Integrating new technologies and a more multidisciplinary approach in dendroecological research could provide key opportunities to close important knowledge gaps in our understanding of scale-dependencies, as well as intra- and inter-specific variation, in vegetation community dynamics across the Arctic tundra.


Asunto(s)
Ecosistema , Tundra , Humanos , Regiones Árticas , Cambio Climático
3.
Front Plant Sci ; 11: 1078, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765561

RESUMEN

Defoliator insects are a major disturbance agent in many forests worldwide. During outbreaks, they can strongly reduce photosynthetic carbon uptake and impact tree growth. In the Alps, larch budmoth (Zeiraphera diniana) outbreaks affect European larch (Larix decidua) radial growth over several years. However, immediate and legacy effects on xylem formation, structure, and functionality are still largely unknown. In this study, we aimed at assessing the impact of budmoth defoliations on larch xylem anatomical features and tree-ring structure. Analyses were performed in the Lötschental (Swiss Alps) within (1,900 m a.s.l.) and above (2,200 m a.s.l.) the optimum elevational range of larch budmoth. We investigated variability of xylem anatomical traits along century-long tree-ring series of larch (host) and Norway spruce (non-host) trees. We identified eight outbreaks affecting larch xylem anatomy during the 20th century, particularly at 1,900 m a.s.l. Tracheid number always showed a higher percent reduction than properties of individual cells. Cell lumen size was slightly reduced in the first 2-3 years of outbreaks, especially in the early part of the ring. The more carbon-demanding cell wall was thinned along the entire ring, but more evidently in the last part. Theoretical tree-ring hydraulic conductivity was reduced for several years (up to 6), mostly due to cell number decrease. Reduced cell wall area and cell number resulted in a strong reduction of the tree-ring biomass, especially in the first year of outbreak. Our study shows that, under carbon source limitations caused by natural defoliation, cell division is more impacted than wall thickening and cell enlargement (the least affected process). Consequences on both xylem hydraulic properties and tree-ring biomass should be considered when assessing long-term defoliator effects on xylem functioning, forest dynamics, and terrestrial carbon cycle.

4.
Front Plant Sci ; 8: 737, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28533792

RESUMEN

The study of xylogenesis or wood formation is a powerful, yet labor intensive monitoring approach to investigate intra-annual tree growth responses to environmental factors. However, it seldom covers more than a few growing seasons, so is in contrast to the much longer lifespan of woody plants and the time scale of many environmental processes. Here we applied a novel retrospective approach to test the long-term (1926-2012) consistency in the timing of onset and ending of cambial activity, and in the maximum cambial cell division rate in two conifer species, European larch and Norway spruce at high-elevation in the Alps. We correlated daily temperature with time series of cell number and lumen area partitioned into intra-annual sectors. For both species, we found a good correspondence (1-10 days offset) between the periods when anatomical traits had significant correlations with temperature in recent decades (1969-2012) and available xylogenesis data (1996-2005), previously collected at the same site. Yet, results for the 1926-1968 period indicate a later onset and earlier ending of the cambial activity by 6-30 days. Conversely, the peak in the correlation between annual cell number and temperature, which should correspond to the peak in secondary growth rate, was quite stable over time, with just a minor advance of 4-5 days in the recent decades. Our analyses on time series of wood anatomical traits proved useful to infer on past long-term changes in xylogenetic phases. Combined with intensive continuous monitoring, our approach will improve the understanding of tree responses to climate variability in both the short- and long-term context.

5.
Front Plant Sci ; 7: 781, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375641

RESUMEN

Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.

6.
Front Plant Sci ; 7: 726, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27313582

RESUMEN

Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter acclimation in these cold regions. Present results for the secondary phloem of trees suggest that adjustment with tissue water content plays an important role in osmolality dynamics. Furthermore, trees acclimated to dry and cold climate showed high phloem osmolality and raffinose proportion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...